
IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 1, 1 JANUARY 2023 597

Building Occupancy Detection and Localization
Using CCTV Camera and Deep Learning

Shushan Hu , Peng Wang, Cathal Hoare, and James O’Donnell

Abstract—Occupancy information plays a key role in analyz-
ing and improving building energy performance. The advances
of Internet of Things (IoT) technologies have engendered a shift
in measuring building occupancy with IoT sensors, in which
cameras in closed-circuit television (CCTV) systems can provide
richer measurements. However, existing camera-based occupancy
detection approaches cannot function well when scanning videos
with a number of occupants and determining occupants’ loca-
tions. This article aims to develop a novel deep-learning-based
approach for better building occupancy detection based on CCTV
cameras. To do so, this research proposes a deep-learning model
to detect the number of occupants and determine their locations
in videos. This model consists of two main modules, namely,
feature extraction and three-stage occupancy detection. The first
module presents a deep convolutional neural network to perform
residual and multibranch convolutional calculation to extract
shallow and semantic features, and constructs feature pyramids
through a bidirectional feature network. The second module per-
forms a three-stage detection procedure with three sequential
and homogeneous detectors which have increasing Intersection
over Union (IoU) thresholds. Empirical experiments evaluate the
detection performance of the approach with CCTV videos from a
university building. Experimental results show that the approach
achieves the superior detection performance when compared with
baseline models.

Index Terms—Building occupancy detection, deep learning,
Internet of Things (IoT) sensor.

I. INTRODUCTION

INTERNET of Things (IoT) technologies have advanced the
research of smart buildings in recent years [1]. As the sin-

gle largest portion of global energy consumption (i.e., around
40%) and greenhouse gas emission (i.e., around 35%) [2],
energy efficiency in smart buildings has attracted great atten-
tion [2]. Against this backdrop, occupancy detection plays
an essential role in achieving more efficient building energy
management [3]. First of all, occupancy information can
assist building managers in comprehensively assessing build-
ing energy performance and identifying building operation
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faults [4]. In addition, this information can help to optimize
operations of equipment (e.g., heating, ventilation, and air
conditioning (HVAC) systems) while maintaining a comfort-
able indoor environment [5]. Moreover, long-term occupancy
information can accomplish better demand responses by identi-
fying energy peak demand periods of buildings and smoothing
energy requirement peaks of buildings in smart grid [6].

A number of developed IoT sensors offer exciting opportu-
nities for measuring occupancy status in buildings, but some
of these sensors might be limited by inherent characteris-
tics [7]. The approaches based on passive infrared (PIR)
sensors can detect infrared light radiating from occupants
which leads to the low-accuracy performance for multiple
and static occupants. Environmental and electricity sensors
are able to measure indoor environmental variations related
to the presence of occupants, resulting in time delay and poor
detection performance in complex environments (e.g., open-
ing rooms). Radio frequency identification (RFID) and WiFi
sensors require additional devices to receive signal from users
and can be significantly affected by noise from obstacles.

An accurate and feasible solution for occupancy detec-
tion in buildings lies in leveraging closed-circuit television
(CCTV) cameras to capture optical streams of the indoor
environment. Device availability can improve the applicabil-
ity and cost efficiency due to the widespread deployment of
CCTV cameras in many buildings for safety and security
issues. A key challenge in camera-based occupancy detec-
tion is eliminating interference caused by background and
object obfuscation. Some powerful techniques from the com-
puter vision domain have opened up potential of obtaining
occupancy information from CCTV videos [8]. Some early
efforts applied pattern recognition technologies (e.g., filtering
algorithm, classification, and clustering methods) to subtract
background information from videos, but these background
subtraction-based approaches can fail if occupants remain
static for extended periods.

Recent research has intended to apply machine learn-
ing to approximate the complex relationships between sen-
sor measurements and occupancy information [9]. Machine
learning performs classification and regression operations
to filter image patches with learnable weights and biases.
Shallow learning algorithms [e.g., support vector machine
(SVM)] provide limited capacity to finish occupant local-
ization. Deep learning significantly improves the learning
performance through deeper and more complex neural network
architectures and has been applied to a wild range of fields.
For example, a significant body of research aimed to develop
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deep-learning-based image segmentation solutions that play a
key role in medical image analysis, robotic perception, and
augmented reality [10]. Deep learning has engendered a shift
for the communication and networking field, such as jointly
optimizing transmitter and receiver components for the phys-
ical layer [11], and accurately classifying mobile encrypted
traffic to obtain highly-valuable profiling information [12].
Advances in deep learning also give rise to the proliferation
of industrial IoT with potential for various applications, such
as smart assembling and smart manufacturing [13]. However,
existing deep-learning-based occupancy detection approaches
cannot function well for complex videos with overlaps among
occupants [14].

This research intends to develop a novel deep-learning-
based approach to obtain accurate occupancy information for
building energy management. The approach needs to elimi-
nate interference from overlaps among occupants and complex
background in CCTV videos. Several technical challenges
inhibit the pathway to achieve this goal. First, to inference
multiple and varisized occupants leads to issues associated
with relevant feature extraction from videos. Second, to accu-
rately localize occupants in videos results in a complex
regression problem adjusting the position and size of predicted
boundaries of occupants. To address the above challenges, this
research proposes to design a novel deep learning model to
scan videos for high-quality occupancy information, includ-
ing the number of occupants and their locations. In doing so,
this work refines the detection problem into two main proce-
dures: 1) extracting fine-grained features related to occupants
from videos and 2) detecting the number of occupants and
calculating their locations.

The main contributions are summarized as follows.
1) We propose a deep learning model for building occu-

pancy detection and localization based on CCTV cam-
eras. This model is capable of delivering the better
detection performance when facing videos with many
occupants.

2) We design a deep neural architecture to construct fea-
ture pyramids from CCTV videos. The architecture uses
a deep convolutional neural network (DCNN) with resid-
ual and multibranch convolutional calculation to extract
shallow and semantic features, and constructs feature
pyramids through a top-down and a bottom-up pathway
integration operations.

3) We perform a three-stage detection procedure to calcu-
late the number of occupants and regress their locations.
This procedure employs three sequential and homoge-
neous detectors to conduct iterative detection on fea-
ture pyramids. Increasing Intersection over Union (IoU)
thresholds are applied to these detectors so as to improve
the detection performance.

4) We conduct empirical experiments to evaluate the detec-
tion performance. Experimental results show that the
approach can achieve superior performance on detecting
the number of occupants and determining the locations
of these occupants.

The remainder of this article is organized as follows:
Section II presents the case of measuring occupancy status

TABLE I
COMPARATIVE ANALYSIS OF SENSORS FOR OCCUPANCY DETECTION

and filtering occupancy information. A detailed description
of the approach is illustrated in Section III. Section IV
demonstrates the effectiveness and superior performance with
empirical experiments. Section V details the conclusions from
the development and testing of this approach.

II. RELATED WORKS

A. Occupancy Measurement With Sensors

The advances of IoT technologies have promoted a wide
range of sensors available to measure building occupancy
status (Table I). To be specific, PIR sensors can detect the
motion of occupants by measuring infrared light radiating
from objects. Yun and Woo [15] demonstrated a quantitative
performance analysis on human movement direction detection
based on PIR sensors, but PIR sensors may fail to measure
static occupants. Environmental sensors aim to detect occu-
pancy through environmental variations caused by the presence
of occupants. Zimmermann et al. [16] presented an approach
to detect occupants using a fusion of environmental sensors
from an indoor air quality measurement system. Two limi-
tations of environmental sensors are a time delay and low
detection accuracy in open cases.

RFID sensors are capable of identifying and tracking tags
attached to objects. Li et al. [17] developed an RFID-based
system to track stationary and mobile occupants for demand-
driven operations. RFID sensors may fall short in requiring
tag attachments on objects and reader deployments. WiFi
becomes a primary signal for occupancy detection with chan-
nel state information [18]. Sheng et al. [19] presented a
deep learning framework for action recognition by integrat-
ing spatial features from CNN into a temporal bidirectional
long short-term memory (LSTM) model. Nonetheless, WiFi
approaches need additional signal receivers and have low
performance in complex indoor environment. Smartphones
provide an alternative for occupancy detection with embedded
sensors. Chen et al. [20] leveraged smartphones to recognize
human activities through extreme learning machine (ELM),
coordinate transformation and principal component analysis
(CT-PCA), and online SVM. The placing aside of smartphones
significantly reduces the detection performance.
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Cameras provide a straightforward optical instru-
ment to capture visible images for occupancy detection.
Zulcaffle et al. [21] designed a four-part method for frontal
view gait recognition based on Time-of-Flight cameras.
However, limitations include computation complexity and
probability with occlusion. Electricity meters are used to
detect interactions between occupants and appliances [22].
Feng et al. [8] tried to detect building occupancy from
advanced metering infrastructure (AMI) data with a CNN
and an LSTM network. Jin et al. [23] presented another
smart meter-based solution which applies a multiview-based
iteration and surrogate loss to learn refined results. The
interactions between occupancy and power are not straightfor-
ward, and sometimes difficult to model. Among these sensors,
cameras can provide richer measurements on occupancy status
than other sensors. Growing deployments of CCTV cameras
also promoted this relevant topic for building occupancy
detection. However, a major barrier obstructing camera-based
detection approaches is eliminating interference caused by
background and object obfuscation.

B. Occupancy Detection With Algorithms

The development of computer vision technologies has
orchestrated a paradigm shift in the way that obtains fine-
grained occupancy information from videos (Table II). An
early study is background subtraction using a Gaussian mix-
ture model. Tamgade and Bora [27] developed an optical
flow motion vector estimation through iterative Lucas–Kanade
pyramidal implementation. Histogram of oriented gradient
(HOG) provides another solution by counting occurrences
of gradient orientation in localized portions of an image.
Cao et al. [28] leveraged an artificial neural network to classify
occupancy information with HOG features.

The technology boom of machine learning enriched occu-
pant detection within videos by learning abundant hidden rules
between inputs to outputs based on a set of training data. With
a clear margin in high dimensional spaces, Shih [29] proposed
an SVM-based system with an image-based depth sensor and
a pan-tilt-zoom camera. Yang et al. [30] used SVM to ana-
lyze whether a person is entering or exiting rooms based on
the difference between two pixel coordinates.

CNN emerged as a deep learning algorithm to analyze visual
imagery through assigning learnable weights and biases to
various objects in an image. Fine-grained features learned
from CNN provide confident and relevant context for occupant
detection. Thys et al. [31] presented a CNN-based approach
to generate adversarial patches of occupants with lots of intr-
aclass variety. Zou et al. [32] developed a CNN approach to
detect people head windows with high recall and precision.

Faster R-CNN introduces a novel detection idea by enabling
nearly cost-free region proposals and sharing convolutional
features with the detection network [33]. Ahmed et al. [34]
demonstrated the applications and effectiveness of Faster
R-CNN through facilitating video analysis for overhead view
detection and segmentation. YOLO presents an alternative
solution that aims for high speed and adequate accuracy by
performing one-stage regression analysis for object detection

TABLE II
COMPARISON OF CAMERA-BASED OCCUPANCY

DETECTION ALGORITHMS

Fig. 1. System architecture of occupancy detection with CCTV video.

with spatially separated bounding boxes and associated class
probabilities. Kajabad and Ivanov [35] presented a YOLO-
based approach to detect people in a closed space and identify
density areas from CCTV cameras in a museum.

Several weaknesses arise from these algorithms. To be spe-
cific, lumination variations significantly affect the performance
of background subtraction. SVM may demonstrate a lower
performance when more noise exists in data sets or the feature
number exceeds the sample number. CNN-based approaches
fall short in occupant localization. Faster R-CNN and YOLO
use a single IoU threshold which may result in an unbalanced
issue for the detection performance. Low thresholds usually
produce noisy results while higher thresholds tend to degrade
the performance.

III. METHODOLOGY

This research intends to develop a novel deep-learning-
based approach to obtain better building occupancy detection.
In doing so, the approach applies CCTV cameras as sensors to
measure occupants’ status and designs a deep learning model
to calculate the number of occupants and their locations as out-
put (Fig. 1). Measurements from cameras are stored as video
files and sequential frames are extracted as input images for
the deep learning model.

A. Problem Formulation and Model

The core problem of the detection approach is designing
a deep learning model to eliminate abundant and complex
interference in images for enhanced detection performance. In
accordance with the principle of deep learning, we formulate
the detection problem into two main procedures called feature
extraction and occupancy detection. First, a convolutional cal-
culation is performed on all pixels of input images to obtain
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Fig. 2. Structure of the deep learning model for occupancy detection and
localization.

shallow and semantic features

� = f

⎛
⎝

m,n∑
i=1,j=1

(
wij ∗ xij

)+ b

⎞
⎠ (1)

where �,xij, wij, and b stand for the output features, input
value at position (i, j) in images, weight value for position
(i, j), and bias, respectively. m and n indicate the size of input
images. The size of features � ∈ RH×W×C consists of a height
value H, a width value W, and a channel number C.

Second, the occupancy detection procedure is split into a
classification subproblem and a regression subproblem. A clas-
sification function O = fcl(�

H×W×C) is used to identify if the
potential object is a occupant or not (O ∈ {1, 0}). A regression
function B = fre(�H×W×C) is used to determine the closest
bounding boxes for target occupants. B represents a predicted
bounding box with four parameters {bx, by, bw, bh}, where bx

and bx stand for the position of the left corner of the box, bw

and bh indicate the width and height of the box.
In practice, there are multiple occupants contained in

CCTV videos. The occupancy detection is extended as a
multidimensional solution. Let N be the number of occu-
pants and the output � indicates the N-dimensional occupancy
vector � = (O1,B1), (O2,B2), . . . , (ON,BN).

Following the problem formulation, this research designs
a novel deep learning model to solve the detection problem
(Fig. 2). Algorithm 1 illustrates a pseudocode of the deep
learning model. Based on input images, this model leverages
two main modules, namely, feature extraction and three-
stage occupancy detection, to finish the occupancy detection
mission. The first module learns multiscale features from
input images with a DCNN and constructs feature pyramids

Algorithm 1 Pseudo Code of the Occupancy Detection Model
# construct feature pyramid from images
feature extraction function:

extract feature as dcnn(img)
obtain feature pyramids as
bifpn_downchannel(feature), bifpn_convup(up_feature)
return feature_pyramid

end function

# perform three-stage detection
three-stage detection function:

obtain region proposals as
rois = RPN(feature_pyramid)
for each stage i do

extract ROI feature as roi_pooling(rois)
map ROI feature to sample space as
fc_forward(pool_result)
perform classification as fc_classifier(fc)
perform regression as fc_bbox_reg(fc)
obtain classification loss as
loss_cls = cross_entropy(cls_score, label)
obtain regression loss as
loss_reg = L2_loss(bbox_pred, gt_bbox)
obtain final loss as
loss = loss_cls + loss_reg
optimise model by backprogration

end for
return objects and bounding boxes

end function

through a bidirectional feature pyramid network consisting of
a top-down and a bottom-up feature integration pathway. The
second module performs a three-stage detection with sequen-
tial and homogeneous detectors which have increasing IoU
thresholds. Two loss functions, including a classification loss
and a bounding box regression loss, are used to conduct
backpropagation for optimization of model parameters.

B. Feature Extraction

This approach designs a DCNN as the backbone network
to learn multiscale and high-dimensional features from input
images. The architecture of a building block in the DCNN fol-
lows a strategy of splitting, transforming, and aggregating [36]
[Fig. 3(a)]. This strategy divides one single training path into
a group of convolution paths. Features from these paths are
depth aggregated to final output.

The splitting phase first leverages a base layer to separate
the input into two parts (Parts 1 and 2) with channel data
(xl = [x′

l, x′′
l ]). x′′

l will go through a dense convolutional block
and a transition layer. x′

l is then combined with transmitted
features to the next stage. The dense block is defined as a
homogeneous and multibranch building block with a set of
transformations with the same topology. A dimension called
“cardinality” is defined to represent the size of the set of trans-
formations. Cardinality is an essential factor in addition to
the dimensions of depth and width. A more effective way to
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Fig. 3. (a) Building block of DCNN with cardinality = 32. (b) Building
block of DCNN with grouped convolutions.

improve learning capacity lies in increasing cardinality, rather
than constructing a deeper or wider architecture.

In the transforming phase, each convolution path consists of
three convolution layers: 1) 1×1 4-d layer; 2) 3×3 4-d layer;
and 3) 1 × 1 256-d layer. A novel transformation function (2)
replaces the elementary transformation in a simple neuron

F(x) =
C∑

i=1

Ti(x) (2)

where Ti(x) and C stand for an arbitrary function and the
size of the set of transformations (i.e., cardinality), respec-
tively. Ti(x) projects the input vector x into an embedding
code and then, transforms the code. C is a newly introduced
hyperparameter for a new pathway of adjusting the model
capacity.

The aggregating phase deeply integrates intermediate trans-
formed features into final features. An aggregated transforma-
tion function (y = Ti(x) + x) is used to construct the residual
function for the building block. y is the output of a block. This
structure reformulates the network layers with reference to
the layer inputs instead of learning unreferenced functions. A
residual learning reformulation solves the degradation problem
as the network depth increases. The reformulation approxi-
mates the network as a residual function F(x) := H(x)−x and
defines the building block as residual learning in the network
layers

xT = F
(
x′′

l , Wl
)+ W ′

l x
′′
l (3)

where xT , x′′
l , F , Wl, and W ′

l stand for the output and input
vectors of the network layers, the residual mapping function,
and weight vectors, respectively. F(x′′

l , Wl) needs to be learned
during the training process. If the dimensions of F and x′′

l are
not equal, the model conducts a linear projection W ′

l on x′′
l to

match the dimensions.
In addition, a partial transition layer is designed to gener-

ate the output feature xl+1 by maximizing the difference of
gradient combination

xl+1 = W ′′
l ∗ [x′

l, xT
]
. (4)

Fig. 4. Feature network of constructing feature pyramids with bidirectional
cross-scale connections.

The partial transition layer conducts a hierarchical feature
fusion strategy by truncating the gradient flow to prevent dis-
tinct layers from learning duplicate gradient information. This
truncation combines the output from the dense block with the
features coming from part 1. The strategy is able to signifi-
cantly reduce the computation complexity since the gradient
flow is truncated and the gradient information will not be
reused.

In order to simplify the structure of the dense block and
improve training efficiency, an equivalent structure is refor-
mulated [Fig. 3(b)] for the dense block shown in Fig. 3(a).
This reformulation replaces the low-dimensional embedding
layers [i.e., the first 1×1 4-d layers in Fig. 3(a)] with a single
and wider layer [i.e., the first 1 × 1 128-d layers in Fig. 3(b)].
The grouped convolution layer divides its input channels into
32 groups of convolutions whose input and output channels
are 4-D. The third layer leverages a 1 × 1 filter to match the
input dimensions to output vectors.

In order to enable multiscale occupancy detection with
proportionally sized features, the approach applies a feature
network to construct feature pyramids using intermediate fea-
tures from the DCNN (Fig. 4). With the pyramidal hierarchy
of DCNN, the features from shallow layers (e.g., C2, C3) con-
tain high-level resolutions but low-level semantic information.
The feature from deep layers (e.g., C4, C5) have high-level
semantic information but low-level resolutions.

This feature network integrates both the bidirectional cross-
scale connections and the fast normalized fusion. In detail, the
network consists of a bottom-up pathway, a top-down pathway,
and lateral connections to integrate features with high-level
resolutions and semantic information without much calculation
load [37].

With hierarchical features (C2, C3, C4, C5) from a typical
feed-forward convolutional calculation, the top-down pathway
constructs upsampled features by generating higher resolution
features through an upsampling calculation. These upsampled
features are enriched through lateral connections sourced from
features at the same level. The fast normalized fusion is used
to integrate different features: O = ∑

i ([wi]/[ε +∑
j wj]) · Ii,

where wi is weight vector for input feature Ii, ε = 0.0001 is
a small value to avoid numerical instability. For example, the
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Fig. 5. Procedure of three-stage detection with three sequential and
homogeneous detectors.

upsampled feature at level 4 is calculated as

Ptd
4 = Conv

(
w1 · C4 + w2 · Resise(C5)

w1 + w2 + ε

)
(5)

where the Resise function is an upsampling with the nearest
neighbor strategy on the spatial information by a factor of 2 ×.
A lateral connection is used to enhance the unsampled results
with previous features at the same level (C4). The connection
indicates an element-wise addition operation and a 1 × 1 conv
for a reduction of channel dimensions.

To obtain fine-grained features, the bottom-up pathway per-
forms another integration upon upsampled features of the top-
down pathway and features of feed-forward computation. This
pathway applies subsampling functions to construct an oppo-
site integration direction compared to the top-down pathway.
For example, the final features at level 4 are calculated as

P4 = Conv

(
w′

1 · C4 + w′
2 · Ptd

4 + w′
3 · Resise(P3)

w′
1 + w′

2 + w′
3 + ε

)
(6)

where the Resise function is a subsampling with the nearest
neighbor strategy on the spatial information by a factor of 2×.
Beside subsampled features from higher resolution features
(P3), two lateral connections integrate two previous features
(C4 and Ptd) for the final integration.

C. Three-Stage Occupancy Detection

With feature pyramids, the approach performs a three-
stage detection to obtain high quality occupancy information
(Fig. 5). Three homogeneous detectors (i.e., detector1,
detector2, and detector3) perform a subtraining operation in a
sequential order and have the same topology, which can gener-
ate high quality hypotheses at inference time and achieve better
match results with increasing quality of detectors. Increasing
IoU thresholds are used for these detectors in order to smooth
the unbalanced detection arising from a single IoU threshold,

as low thresholds usually produce noisy results while higher
thresholds tend to degrade the performance due to overfitting
and mismatch problems [38]. The three-stage detection is rep-
resented as an iterative detection process to filter occupancy
information from images. A region proposal network (RPN)
generates initial region proposals for the detector of stage 1
(detector1), the output of which provides additional and better
region proposals to train the detector of stage 2 (detector2).
The subsequent detector at stage 3 (detector3) applies the out-
put of detector2 as region proposals to improve the detection
performance.

RPN conducts a resampling operation on feature pyramids
and predicts region proposals for objects at each pixel of
the input images. The resampling applies a convolution layer
(3 × 3 conv) to transform the input features as 256-d. Two
parallel convolution layers (1 × 1 conv) are used to generate
enhanced features for subsequent classification and regres-
sion missions. A classifier and a bounding box regressor
are responsible for predicting k region proposals, which are
parameterized relative to k reference boxes (i.e., anchors).
Finally, a loss function (7) minimizes the difference between
the reference and ground truth boxes

L({pi}, {ti}) = 1

Ncls

∑
i

Lcls
(
pi, P∗

i

)

+ λ
1

Nreg

∑
i

p∗
i Lreg

(
ti, t∗i

)
(7)

where i, pi, and p∗
i stand for the index of an anchor,

the probability of a predicted anchor being an object, and
the ground-truth label valuing 1 with a positive anchor,
respectively.

With initial region proposals, the three detectors perform an
iterative detection with increasing IoU thresholds. The detec-
tor integrates feature pyramids and region proposals from RPN
(or detectors of previous stages) as input. An RoI pooling
layer is used to resample the input features as fixed size.
Following a retraining process of two fully connected layers,
a classifier checks if the anchors contain occupants or not.
A bounding box regressor tries to precisely localize bound-
ing box coordinates by a mount of translating and scaling
operations.

The classifier is defined as a function h(x) aiming to catego-
rize candidate objects into one of two classes. Class 0 indicates
image background and class 1 is the occupant category. The
function h(x) applies the posterior distribution upon an patch
x of images and predicts a class label y for objects in this
patch (hk(x) = p(y = k|x)). A risk function assesses the
classification performance of the function and improves the
performance through a training process

Rcls[h] =
∑
i=1

Lcls(h(xi), yi) (8)

where Lcls stands for a cross-entropy loss function.
The bounding box regressor represents another function

ft(x, p) to precisely confirm bounding box coordinates for
occupants. The function regresses a predicted box p in an
image patch x to a ground-truth box g in the stage t.
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The bounding box p is represented with four parameters
(px, py, pw, ph), where px and py are coordinates of the top left
corner, pw and ph stand for the width and height of the box.
The ground-truth box g is also represented with four param-
eters g = (gx, gy, gw, gh). The regressor tries to minimize the
bounding box risk by an indicator

Rloc[f ] =
∑

i

Lloc(f (xi, pi), gi) (9)

where Lloc stands for the loss function calculating a distance
vector � with four variables (δx, δy, δw, δh) from

δx = (gx − px)/pw, δy = (
gy − py

)
/ph

δw = log(gw/pw), δh = log(gh/ph). (10)

This approach applies a cascade regression strategy by
adopting a resampling procedure to adjust the distribution
of hypotheses for different stages. The strategy defines an
overall regression function f (x, p) as a cascade of specialized
regressors ft(x, p) for the three detection stages

f (x, p) = f1(x, p) ◦ f2(x, p) ◦ f3(x, p) (11)

where f1, f2, and f3 stand for the regressor for stage 1, 2,
and 3, respectively. The operator ◦ is cascaded linkage mean-
ing each regressor ft is optimized for the box pt generated by
the previous regressor ft−1.

A loss function is defined to optimize the detection
performance of each stage t with an IoU threshold ut

L
(
xt, g

) = Lcls
(
ht
(
xt), yt)

+ λ
[
yt ≥ 1

]
Lloc

(
ft
(
xt, pt), g

)
(12)

where pt, λ, and yt stand for the regressor of stage t − 1 [i.e.,
ft−1(xt−1, pt−1)], the tradeoff coefficient, and the label of the
patch xt under the threshold ut, respectively.

IV. PERFORMANCE EVALUATION

In order to demonstrate the effectiveness and superior
performance of the approach, this work documents a case
study of occupancy detection when applying some other
popular solutions as the baseline.

A. Experimental Setup

The case study begins by preparing a data set with labeled
images to enable verification of the approach. With videos
(resolution: 1920 × 1080) collected from CCTV cameras in
a university building over a period of five weeks in 2019,
this study conducts a preprocessing procedure with several
steps to obtain labeled images. The procedure begins by trim-
ming video segments recorded when the room is not occupied
according to the teaching schedule of the target classrooms.
The second step takes images from the remaining videos with
an interval of 8 s during lectures and the interval becomes
5 s during breaks between lectures. The reason is occupants
normally have more movements during breaks leading to fre-
quent variations in images. Finally, the authors manually draw
bounding boxes for occupants to generate labeled images. In
summary, this study prepares nearly 12 000 labeled images for

TABLE III
DETECTION PERFORMANCE UNDER DIFFERENT MODEL PARAMETERS

the data set. The demonstration uses 10 000 images of the data
set to train the occupancy detection algorithms, while 2000
images are used to test the performance of these algorithms.

This research implements the proposed deep learning model
as an executable program for the performance test upon the
data set. The implementation uses the Python programming
language for coding and applies Pytorch as the basic platform.
The program is run on a server with the following specifica-
tions: AMD 3960X CPU at 4.0GHz 24 cores, 128 GB DDR4
RAM, 2 × GeForce 2080Ti GPU, 512GB SSD, and Ubuntu
×64 OS.

B. Deep Learning Training

This study conducts a training process to improve the detec-
tion performance of the model. This training process starts
from a learning rate of 0.0025 × 0.001 and follows the
warmup strategy which keeps linear growth until the 10th
epoch. We try to optimize the model parameters using the
stochastic gradient descent (SGD) optimizer, which aims to
minimize the cross entropy and smooth L1 objective functions
following the opposite direction of gradient descent. In order
to reach the convergence point, we train the developed model
by increasing the epoch value from 1 to 30 (Fig. 6). Four met-
rics called Accuracy, mean absolute error (MAE), mean square
error (MSE), and mean average precision (mAP) are used to
evaluate the detection performance. It can be found that the
model tends to convergence with the epoch value of 12. In par-
ticular, the accuracy value reaches the peak point at the 12th
and the 21st epoch [Fig. 6(a)]. The MAE results show three
troughs when the epoch values are 12, 17, and 21 [Fig. 6(b)].
The MSE results contain four minimal values at the 10th, 12th,
14th, and 21st epoch. The mAP curve reaches the peak point
with the epoch value of 12 [Fig. 6(c)].

Regarding the three-stage detection architecture, we improve
the detection performance by analyzing three main parameters
called anchor area, anchor ratio, and stage IoU (Table III) with
MAE, MSE, and mAP metrics. The model obtains relatively
good performance with initial parameters (first row). We quickly
confirm the anchor area to be [16, 32, 64, 128, 128] by analyzing
the area of ground truth boxes. Another stage IoU ([0.4, 0.5,
0.6]) is tested to reach the first milestone (second row). We
identify that the ratio of [0.75, 1.0, 1.5, 2.0, 3.0] can achieve
better detection performance (third row). The integration of
the anchor ratio and the stage IoU assists the model to achieve
the best performance (fourth row).

C. Baseline Models

For the purpose of evaluating the performance of the
approach, the case study selects five state-of-the-art detection
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Fig. 6. Convergence curves for the deep learning model training. (a) Accuracy
results. (b) MAE and MSE results. (c) mAP results.

models to establish a baseline for comparison. Faster R-CNN
uses RPN to achieve good detection performance by predicting
object bounding boxes and objective scores at each location.
YOLOv4 presents a one-stage object detection solution with
high speed and adequate accuracy and performs regression anal-
ysis for object detection with spatially separated bounding boxes
and associated class probabilities. EfficientDet follows the one-
stage paradigm for object detection by integrating EfficientNet
with a set of fixed scaling coefficients and a bidirectional fea-
ture pyramid network. RetinaNet is another popular one-stage
detector, which applies a feature pyramid network for detecting
objects at multiple scales and defines the focal loss function to
facilitate the extreme foreground-background class imbalance.
An anchor-free extension of RetinaNet (AF RetinaNet) defines
a simple and effective building block for single-shot object
detectors by addressing issues such as heuristic-guided feature
selection and overlap-based anchor sampling.

Fig. 7. Visual results of occupancy detection and localization in images.

Fig. 8. Visual results of failed occupancy detection: (a) failed detection
due to sheltering from a microphone; (b) incorrect detection of a schoolbag;
(c) failed detection due to overlaps between occupants; and (d) failed detection
due to overlaps between occupants.

D. Experimental Results

1) Detection Results Visualization: This study represents
an example (Fig. 7) that visualizes the occupancy detection
results of the approach. There are 32 occupants in this image
where nearly one quarter of occupants are standing, while
other occupants are sitting in fixed seats. Some overlaps exist
among occupants due to the layout of seats and shielding
from standing occupants. The approach successfully detects
all 32 occupants contained in the image. Regarding occupancy
localization, it is obvious that the predicted bounding boxes
for occupants (i.e., red box) have high-degree overlaps with
bounding boxes of ground truth (i.e., green box).

This section shows some failure cases generated by the
proposed model (Fig. 8). The first two cases are caused
by interference from irrelevant objects. Results in Fig. 8(a)
present a failure when detecting the occupant behind the
microphone and a schoolbag is recognized as an occupant in
Fig. 8(b). The second two cases are due to occlusions from
other occupants in crowded scenarios. One occupant is missed
in Fig. 8(c) due to occlusion from another occupant in front.
Two occupants in Fig. 8(d) are detected as only one occupant
due to a vertically overlapping layout.

2) Occupancy Detection Performance: This study evalu-
ates the performance when detecting the number of occupants.
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Fig. 9. Precision performance evaluating the number of occupants being
correctly detected.

Two metrics called Precision and Recall are used to assess the
detection accuracy (Fig. 9)

Precision = TP

TP + FP
, Recall = TP

TP + FN
(13)

where TP, FP, and FN stand for the true positive number,
the false negative number, and the false positive number,
respectively.

All detection models obtain relatively good performance
upon detecting the number of occupants. To be specific,
our model can detect most occupants with a Precision value
of 89.7% and a Recall value of 89.2%, while RetinaNet
has the worst performance with values (83.1%, 82.9%). The
anchor free structure leads to a slight increase in the detection
performance when compared with RetinaNet. Faster R-CNN
has the second best performance with values (87.3%, 87.2%).
YOLOv4 presents good accuracy results with the improvement
based on bag of freebies and bag of specials. In general, two-
stage detection models have better performance than one-stage
models since RPN generates initial and valuable proposals to
improve the detection performance.

The case study uses another metric called F1 score to repre-
sent the harmonic mean of Precision and Recall values when
evaluating the prediction performance of models

F1 = 2 Precision × Recall

Precision + Recall
. (14)

The F1 scores of all six models are shown in Fig. 10. These
models have values between 83% to 90%, in which our model
has the highest value (89.5%) and RetinaNet has the lowest
value (83%). Faster R-CNN has the second best performance
(87.2%). The difference between Faster R-CNN and our model
is due to a single IoU threshold can not balance noisy results
and good performance. YOLOv4 and EfficientDet have rela-
tively good results (86.0% and 85.2%, respectively) due to the
one-stage architecture that is a bit weak for detecting multiple
occupants from complex images.

This assessment applies MAE and MSE metrics to evaluate
the detection performance (Fig. 11). Our model has the lowest

Fig. 10. Detection performance of all detection models in F1 score.

Fig. 11. Detection performance in terms of MAE and MSE, evaluating
differences between predicted and observed values.

value (MAE:0.94, MSE:1.35) while YOLOv4 has the highest
MAE value (2.89) and RetinaNet has the potential for the
greatest improvement in terms of MSE (4.26). The reason
is YOLOv4, RetinaNet and EfficientDet perform one-stage
detection which predicts a fixed number of possible objects
on a grid. AF RetinaNet presents good performance on both
metrics (i.e., MAE:1.31, MSE:2.48) since it applies a feature
selective anchor-free module to enhance limitations brought
up by the conventional anchor-based detection.

3) Occupancy Localization Performance: This research
leverages two popular metrics called average precision (AP)
and mAP to evaluate the localization performance (Table IV).
AP is a metric for calculating the overlap ratio between pre-
dicted and true boxes. mAP evaluates the overall performance
by computing a mean value for all of the AP values at different
IoUs.

mAP results of all models are illustrated in Fig. 12. These
models obtain values of more than 40% in mAP indicat-
ing good performance when predicting bounding boxes for
occupants. Our approach achieves a significant improvement
in mAP (about 2%) when compared with other models.
RetinaNet has the worst performance with an mAP value
of 40.9%. YOLOV4 achieves better performance than Faster
R-CNN. This is because mAP only relates to bounding boxes
of correctly predicted occupants and YOLOV4 has fewer cor-
rectly predicted occupants than Faster R-CNN. The undetected
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TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT DETECTION MODELS

Fig. 12. Detection performance of all detection models in mAP.

occupants are often surrounded by complex background and
it is difficult to calculate their bounding boxes.

Regarding the AP metric, in accordance with the mAP met-
ric, the proposed approach has the best performance for all
IoU thresholds from AP50 to AP80. RetinaNet has the low-
est values at different IoU thresholds. It is worth noting that
these models exhibit decreasing performance when increasing
IoU thresholds. The reason is overlaps among occupants in
images may cause detectors to treat crowded occupants as a
single detection, or to mistakenly shift the target bounding box
to another person with higher IoU thresholds.

Furthermore, this experiment finds that considerable dif-
ferences exist in occupancy detection for different scenarios
in images (Fig. 13). This research defines a complex sce-
nario where an image contains more than 30 occupants and
more than 10 occupants are standing, with more overlaps
between occupants. The regular scenario indicates images
outside the complex range. Although our approach achieves
the best performance on both scenarios, a significant differ-
ence of nearly 5% shows in mAP when evaluating detection
performance for the two scenarios. The biggest difference
(around 10% in mAP) belongs to AF RetinaNet. This arises
due to additional overlaps caused by more occupants and
increased standing in the complex scenario, as such this poses
a more difficult scenario for occupancy localization.

4) Computation Performance: This section documents the
computation performance evaluation for all models (Table V).
This performance evaluation selects three indicators, called
trainable parameters, memory requirements, and inference
time, to assess the computation and storage cost of these
models. The inference time is the most important indicator
representing the time of scanning one image. It is obvious

Fig. 13. Detection performance for images with different scenarios.

TABLE V
COMPARISON ON THE COMPUTATION PERFORMANCE

that all models have super performance with a time less than
0.1 s. Although our model needs a bit more inference time
due to a complex architecture for better occupancy detection,
it is efficient to meet time requirements for future applica-
tions deployed in buildings. Regarding the other two metrics,
though more trainable parameters in our model lead to more
memory requirement, it is worth noting that memory require-
ments of all models (from 1390 to 1610 MB) only take up a
small proportion of the total memory of popular GPUs, which
normally is larger than 10 000 MB.

E. Discussion

This work enhances the performance evaluation by dis-
cussing the performance of our approach and some existing
occupancy detection solutions. Due to the inaccessible source
code or data set, this discussion is finished with results from
references (Table VI). A head detection solution [32] applies
HOG features and a 7-layer CNN to obtain good performance,
but a low occupancy number (0–3) significantly reduces the
detection difficulty when compared with our model. Two solu-
tions [31], [35] apply the YOLO model to finish occupancy
detection missions. It can be concluded that our model is
better than them since one baseline model (YOLOv4) has bet-
ter performance than YOLOv3 and YOLOv2 [39]. Although
an occupancy presence detection solution [28] achieves a
high accuracy value, our solution can have 100% accuracy
when finishing presence detection. An overhead detection
approach [34] leverages Faster R-CNN to detect occupants
from an overhead angle of view and has a good true posi-
tive rate (TPR) value (94%). Though our model has a lower
TPR value (89.2%), it can be inferred that our approach has
superior performance than Faster R-CNN-based analysis in
Section IV-D2.
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TABLE VI
ANALYSIS WITH EXISTING OCCUPANCY DETECTION SOLUTIONS

V. CONCLUSION

This research proposes a novel approach for building occu-
pancy detection and localization using CCTV cameras and
deep learning. In doing so, the approach designs a deep learn-
ing model consisting of two main modules to achieve better
occupancy detection. The first module leverages a DCNN to
learn shallow and semantic features from input images and
constructs feature pyramids through a two-pathway integra-
tion and lateral connections. The second module represents
a three-stage detection procedure that uses three sequential
and homogeneous detectors to conduct iterative detection with
increasing IoU thresholds. Experimental results show that the
proposed model can achieve superior performance on occu-
pancy detection and localization when compared with baseline
models, including 0.94 in MAE and 1.35 in MSE for the
detection performance, and 44.5% in mAP for the localization
performance.

With this method, building managers and engineers can
obtain the number of occupants and their locations in videos.
Then, these managers have reliable information when formu-
lating energy-efficient action plans with other stakeholders.
Better energy-related strategies can be decided to improve
building energy efficiency while maintaining environmental
comfort for occupants. In addition, engineers are able to
develop accurate building performance simulation and smooth
energy consumption peaks for buildings in smart grids.

Future research will further investigate the benefits of
occupancy detection and deep learning for building energy
management. In particular, we plan to improve occupancy
detection performance in the complex scenario by updating
the deep learning model with possible improvements on the
RPN architecture and the nonmaximum suppression mech-
anism. With precise and reliable occupancy information, a
potential research opportunity lies with improving building
energy performance by using deep reinforcement learning to
enable better control of devices [40].
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